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INTRODUCTION

The Statistical Reporting Service (SRS) presently forecasts grain
crop yields with models whose parameters have been estimated by use of
historic data. These "between-year models" depend on a base period of
time, usually three years, to supply data on the relationships of plant
measurements to final yield. The estimated yield at harvest for each
plot in a probabilistic sample is regressed against preharvest plant counts
and fruit measurements, and the model parameters are estimated. An assump-
tion is made that the present year is a part of the composite population
of these base period years, and the model parameters that have been esti-
mated are then used in conjunction with current year counts and measure-
ments to forecast current year yield.

Since 1973, The Yield Assessment Section of SRS has been involved in the
development of within-year forecasting models for various grain crops.
These models are being developed to provide forecasts of pertinent co~
ponents of crop yield by relying entirely on growth and survival data
collected from plant observations during the current growing season.

Although the value of historic information in crop forecasts is apparent,
"within-year" models could be a valuable supplement to the between-year
models presently used by SRS. A model which uses data from the current
growing season only may be beneficial in improving forecasts during a
year with atypical growing conditions. Recent speculation of worldwide
climatic changes indicates the possibility of an increasing number of
atypical years. A within-year model could also be used effectively in
developing an objective yield program for a crop or state previously ex-
cluded from objective forecasting. In such a situation, there would be
no base period of growth data from which to estimate parameters.

The 1976 Corn Growth Research Project was carried out as part of the con-
tinuing effort to develop feasible within-year forecasting techniques.
The objectives of this paper are to:

1) Discuss the form of the logistic growth model and its
applicability to forecasting corn yields.

2) Describe the sampling, data collection and data handling
techniques involved in the 1976 Corn Research Projects.

3) Discuss the analysis that was performed on this data. This
discussion will include:

a) The performance of the logistic model and two homoscedastic
modifications when fitted using 1976 corn growth data from
Iowa and Texas.

b) The use of simulated growth data to observe various model
characteristics.

c) The use of the logistic model to forecast plant survival.

4) Make recommendations for future research.



LOGISTIC GROWTH AND SURVIVAL MODELS

A logistic model is a non-linear model having a single dependent varia-
ble and an independent "time" variable. The model uses repeated obser-
vations from the current year to estimate the parameters needed to pre-
dict the dependent variable at maturity. The logistic model has been
shown by previous studies to accurately describe a growth proc~~s as
well as a survival process in corn kernel formation. (XII, X)ll

The form of the logistic model is:

y.
1

ex---- + E.
1

i = 1,2, ... , n (1)

ex, 8, p non-negative parameters, 0 < P < 1

has been observed to have a functional relation-The disturbance term E
i

ship with the independent variable.

E. = disturbance term
1

t. independent time variable
1

y. = dependent growth or survival variable
1

Thus in realitv, E. = E.(t.). The
- 1 1 1

actual form of this disturbance will be discussed in more depth later in
this report.

When used to explain corn growth, the model gives the relationship of
kernel weight and development to the length of time the kernels have
been growing. In previous research efforts, various combinations of
independent and dependent variables were experimented with to serve as
proxy for growth and growing time. These included "tassel emerged,"
"silked emerged," and "silk starting to dry" as the zero point for the
time variable, and "dry ear weight," "dry kernel weight," and "wet
kernel weight" as the growth variable. The optimal combination of those
tested was "time since silking" and "dry kernel weight per plant." (XII)

The logistic growth model hypothesizes that dry kernel weight accumu-
lates slowly in a plant during the earliest stages of ear development,
increases at an increasing rate for a period of time, and then increases
at a decreasing rate approaching an asymptotic maximum value. This
asymptotic value represents the total dry weight per plant at maturity.
It is this parameter that is expanded by estimates of plants per acre
to produce a yield forecast.

l/ References to sources will be indicated by parenthesized Roman num-
erals which are associated with entries on the reference page at the
end of the report.
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The logistic growth model is shown graphically below.
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Plant survival has also been shown to be a phenomenon whose change over
time can be expressed by a logistic equation. Unlike a growth function,
a function modeling a survival process must have a nonpositive slope.
This is what happens when the B parameter in the logistic function is
negative.

The logistic survival model is shown graphically below.

Y.
1

a
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o
t.
1
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SAMPLE DESIGN AND DATA COLLECTION

Subsamples of the June Enumerative Survey (JES) corn fields were random-
ly chosen in Texas and Iowa to serve as the corn growth research sample
of fields. The JES was based on an area frame sample of segments where
corn acreage and the acreages of other crops were obtained for each field
in the segment. Because estimates of "yield per acre" and not "per field"
were desired, fields were sampled with probabilities proportional to the
JES expanded corn acreage. This procedure produced a sample which was
self-weighted by acres per field.

Ninety sample fields were selected throughout Iowa while 30 fields were
selected in two crop reporting districts in western Texas. A number of
fields were lost due to farmer refusal or other circumstances resulting
in a final sample size of 24 in Texas and 78 in Iowa.

Within each field two units were located randomly using procedures out-
lined in the objective yield "Corn, Cotton and Soybeans" Enumerator
Manual. (VI) Each unit consisted of a row length of 100 corn plants.
A plant was defined as all growth from a single seed including the main
stalk and all tillers.

Data collection was carried out in four phases: plant population count,
phenological event observations, ear removal and field measurements,
and the laboratory determination of dry matter. A more complete de-
scription of all data collection procedures can be found in the enumerator's
and laboratory manuals. (VII, VIII)

PLANT POPULATION COUNTS

During the first visit to each sample field, plant population deter-
minations were made. Plants were counted in a 45 foot row segment in
each randomly selected unit. Row widths were measured at three places
in each unit. These measurements allowed plant population estimates
to be aggregated to the field, state or area level.

PHENOLOGICAL EVENT OBSERVATIONS

The purpose of the second phase of the data collection, the phenological
event observations, was to obtain the time of silk emergence for each
plant in each unit. Silk emergence for a plant was defined to have
occurred when silk was first observed on any ear of the plant or its
tillers. The silking data for a plant was set as the data midway be-
tween the date of the visit when silk emergence was first observed and
the date of the previous visit. Observations were made for silk emer-
gence every 3-4 days during peak silking periods, and weekly during less
active silking days.

5



At a time a plant had been observed to have silked, a yellow tag was
placed on it. Only plants with such tags were included in the remain-
der of the sampling process as plants not silking were assumed to have
no grain producing capability.

EAR REMOVAL AND FIELD MEASUREMENTS

Beginning the last week of July, weekly visits to the sample fields were
made to carry out the third phase of data collection. These visits
continued for 10 weeks or until harvesting of the field, whichever
occurred first.

On each visit, four plants showing kernel formation were selected from
each unit in the following manner. Blocks of ten plants were inde-
pendently ordered for sampling on the first through tenth sampling
visit. Within each block, the ten plants were randomly ordered. On
any given visit, plants in the selected block were observed in the ran-
dom order until four plants showing kernel formation had been sampled.
A plant was considered to have kernel formation if any of its ears had
such formation. Plants that had not silked (did not have a yellow tag)
were excluded from the population being sampled.

The following "in-field" observation were made on each ear of each
plant being sampled. First a determination was made as to whether kernel
formation was present. Then ear length and circumference measurements
were made without removing the ear from the stalk or disturbing the husk.
Finally the ear was picked, husked and weighed. Each ear was carefully
labeled as to whether it was a primary ear, secondary ear, etc., sealed
in a plastic bag and sent to the laboratory.

The in-field measurements and weighing of ears were made to explore the
usefulness of such measurements in doubling sampling procedures. Analysis
of this portion of the data will be presented in a seperate research report.

LABORATORY DETEID1INATION OF DRY MATTER

Sampled ears were sent to the laboratory for determination of dry matter
content. The following procedures, performed on each ear arriving at
the laboratory, made up the fourth phase of data collection.

Two kernel rows were chosen randomly from each ear. The kernels in each
selected row were carefully removed from the cob to prevent damage or
puncturing and to prevent removal of cob parts with them. Kernels from
each individual row were weighed after removal from the cob, and dried
in an oven for 72 hours at a temperature of 150°F to standardize moisture
content. This temperature and drying period were chosen because they
were found to reduce moisture in grain at maturity to less than two percent,

6



while not burning the immature grain coming into the laboratory early in
the growing season. Kernels were weighed after this drying process to
determine dry matter content. Determinations from each of the two sam-
pled kernel rows were averaged and expanded by the number of kernel rows
to compute a mean dry weight of grain for the ear.

7



DATA A..!\l"ALYSIS

The analysis of data was performed seperately for each state. Logistic
growth models will be discussed first.

LOGISTIC GROWTH MODELS

Data collected in the fields and laboratory during the summer of 1976
were prepared so that a logistic growth model could be fitted to such
data via standard nonlinear regression techniques.

"Time since silking," the proposed independent variable, was defined to
be the assigned Julian date of silk emergence (see section on Phenological
Event Observations) subtracted from the date when the plant was sampled.

The estimated dry kernel weights (in grams) for each ear of a plant pro-
cessed in the laboratory was summed to provide an estimate of dry kernel
weight per plant. If a plant had zero dry kernel weight, it was treated
as a "non-survivor" and deleted from data used to fit the growth model.
Instead, non-survivors were used to formulate a logistic survival model
which will be discussed in more detail later in this report.

Mean dry kernel weight and time since silking were estimated for the
growing plants sampled from a field on each visit. Such means incorporated
data from all plants in the same field that were sampled on the same date.
Thus, for each field and sampling date for that field, there was one value
for the independent variable (the mean time since silking) and one value
for the dependent variable (mean dry weight per pl~nt). These means were
used in the regression procedures instead of individual plant data to
insure independence of data points.

Estimates of the number of silked plants per acre were obtained for each
unit by adjusting the plant population estimate by the proportion of
tagged stalks that had silked. A silked plant population estimate for
each field was obtained by averaging the estimates derived from the two
units. Data entering the model from fields with higher silked plant
populations were representative of a larger proportion of the total
population of silked plants than data from fields with the low silked
plant populations. Thus, such data were given more weight in fitting the
model.
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The weighted Marquardt nonlinear procedure in SAS (Statistical Analysis
System) was used to regress the dependent growth variable on the time
variable. Weights were developed from expanded silked plant populations,
causing more weight to be given to fields with denser silked plant popu-
lations. F0T each field, the following weight was calculated.

# of silked plants per acre
10,000

i = 1,2, ... , n (2)

The weighted regression equation was the following:

(w.) (y.) = (w.) [
1 1 1 1

i 1,2, ... , n (3)

In general least squares theory, .several basic model assumptions are made:

E. is normally distributed
1

E (E.) = 0
1

2Var (E.) = 01 E

Cov (E.i,Ej) = 0

(4)

(5)

(6)

(7)

Thus, the assumption was made that the residuals obtained from fitting
the logistic growth model to the corn data were independently distributed
with mean zero and a constant variance 0

2. (As indicated earlier in this
E

report, research conducted in 1974 and 1975 has indicated that the assump-
tion of constant variance (6) is not valid. Variations of the regression
equation will be discussed below whose residuals when fitted to the corn
growth data do not exhibit a significant correlation with time). Figures
A-I and A-2 in the appendix have plots for both Texas and Iowa of the
data from the entire growing se~son with the logistic model fitted to
these data. Using data collected throughout the growing season, the SAS
procedures estimated the model parameters as follows:

Iowa

C1 = 141.2

B 38.4

p .892

9

Texas

C1 = 166.0

B 43.0

p .897



In each case. a would give the estimated mean dry kernel weight (in grams)
per plant at maturity.

Since the growth model was being researched to determine its ability to
"forecast" kernel weight at maturity, it was important to examine the
parameter estimates from a regression in which only early season data
were present. To this end, the above model was fitted to cumulative
growth data each week as new data became available. For example, when
the model was fitted at the end of four weeks of data collection, it was
fitted to data from plants sampled on any of the first four visits to
the field but excluded data from any plant sampled on subsequent visits.
Figures A-4 and A-7 in the appendix give the values of the estimated
parameters for each cutoff data for this unadjusted model. Notice that
these estimates change as additional data are made available. By examination
of these changes, it was hoped that some of the following questions may
be answered.

How early in the growing season can a reasonable forecast be made?
How will the addition of later data affect this forecast?
What happens to the forecast errors as more data are added?

Before these and other questions are pursued, possible violations of model
assumptions will be examined.

HETEROSCEDASTICITY

After fitting the model through all ten weeks of data, an examination
was made to determine if the underlying assumptions of the model had
been met. Earlier research into this growth model indicated that the
assumption of constant variance did not hold and that the residuals from
the regression have a significant positive correlation with time. The
sample correlation coefficient, R, between the residuals and time was
R = .49 in Texas, and R = .46 in Iowa for all ten weeks of d~ta. Graphs
of the residuals versus time for each state are found in the appendix
figures A-13 and A-IS.

This condition is commonly referred to as heteroscedasticity. As reported
in Goldfeld and Quandt, " ... one generally obtains inferior parameter
estimates if ordinary least squares is applied to a model with heteroscedastic
disturbances. Furthermore, the presence of heteroscedasticity may invalidate
standard tests of statistical significance." (I, p.78).

This heteroscedastic problem was recognized during the data analysis
of the 1974 Corn Growth Research Project and various adjustments to the
model have been tried to eliminate or minimize this error. (XI)
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At the present time, the following ones seem the most valid. A model
more closely representing what has been observed is:

(w.) (y.) = (w.) [
1 1 1 1

Ct

+ Bpti
+E:.(t.)]

1 1
i 1,2, .•. , n (8)

where E:(t) is a random variable with

E(E: (t) )= 0

aE:(t) is some increasing function of the independent variable t.

Under the above assumptions consider the following model:

w. + w. E:.(t.) (9)1 Ct 1g. t. 1 1
1

1 + Bpa (t.) 1 a (t.)u. Ui1 1 1

where (w.) (y .)
g. 1 1=
1 au. (t.)

1 1

and au.(t.) is an estimate for the standard deviation of
1 1

(10)

u. (t.)
1 1

(w.) - E:.(t.)]
111

(11)

The disturbance term in this model is:

u. (t.)
1 1

au. (t.)
1 1

with variance

11
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u. (t.) 2 )au. (t (13)Var 1 1 1 iA2
au.(t.) au (t.)

1 1 i 1

2The ratio is close to !lone" for good estimators of a and the model
u.(t.).
1 1

will be homoscedastic as long as the ratio remains constant over time.

Two methods have proved effective in obtaining an estimate of

au. (t.)
1 1

(a) Standard Error Adjustment

The first method of estimating a ( )was suggested in the analysis of au. t.
1 1

within year logistic wheat growth model. (III) The relevant range of the
independent time variable was broken into two-day intervals and a sample
standard deviation from the predicted value was computed for each interval.
A small variation has been made in the procedure described in the wheat
research report. The unadjusted model was first fitted to the data and the
predicted y value for the mean time in each interval was determined. The
sample deviation of the observations in each interval from this "expected
y value" was used as instead of the standard deviation about the

°u(t).

sample mean as was done with the spring wheat model. The assumption was
made that within such a small time period. 0u(t) changes so little that it
could be aSRu~ed constant.

How good an estimate of 0u(t) does this method provide?

t-2 t

12

/
°u(t)

t+2



A step function was derived to approximate an unknown function that is
most probably continuous. The classical way to improve such an approxi-
mation is to decrease the width of the intervals. Unfortunately, in this
case, decreasing the size of the time intervals also decreases the number
of observations available in each interval for estimating the standard
deviation.

As stated above, it was decided to use an interval width of two days.
Such an interval was small enough to allow for a reasonable approxi-
mation by a step function. In the Iowa data, the number of observations
within a single interval ranged from a low of 2 to a high of around 30.
The lower numbers were found in intervals located at the extremes of the
time span. If all intervals contained a sufficient number of observations,
this method of obtaining an estimate of 0u(t) could be satisfactory. Since
this was not the case for all intervals, another methods of estimation was
also considered.

(b) Logistic Adjustment

Because of the problems that could occur with the above method of adjust-
ment, an attempt was made to determine a functional form for cr ( )u t •

An examination of the residuals from the regression of the unadjusted
model indicated that the absolute value of the residuals of u(t) in-
creased slowly at first, then increased more rapidly, finally leveling
off to a broad horizontal band (See Figure A-17 in the appendix). This
behavior suggested that 0u(t) itself could have a logistic structure.

If 0u(t) did have a logistic functional form, it would still be necessary
to estimate the parameters for this function. To do this, the absolute
value of the residuals from the regression with the unadjusted model
were used in a non-linear regression to fit the model.

Q. =
1

+ V.
1

i = 1, ..., n (14)

where V. has mean zero and small constant variance. Once these regression
1

parameters E,F,G were estimated, the fitted equation

°u.(t.)
1 1

E
1 + F G ti

i = 1, •.., n (15)

was used as an approximation for 0u(t). The homoscedastic model (9) was
then run. This method of adjustment overcame one of the major problems
present with the use of the standard error adjustment. It did not require

13



a small interval to contain a certain m1n1mum number of data points. The
major disadvantage of this method of adjusting for heteroscedasticity is
apparent. Its value as a supplier of an estimate of 0u(t) depends upon
the ability of the logistic model to explain the pattern of regression
residuals. Later in this report, a set of simulated data points will be
discussed. These points were generated to fit a logistic equation with a
disturbance term which was normally distributed with zero mean and logis-
tic standard deviation. Examination of these simulated data gives some
additional credibility to the assumption of a logistic standard deviation.

CO~WARISON OF THREE MODELS

Comparisons using 1976 corn research data were made of the three logistic
models discussed above: The unadjusted model, the standard error ad-
justed model, and the logistically adjusted model. Attention was con-
centrated on a comparison of the two homoscedastic models.

Because the purpose of this research was to develop forecasting
techniques, it was important to consider how each of these models behaved
at various cutoff dates throughout the growing season. Several of the
cutoff dates were particularly important. Four weeks of data were avail-
able for the September 1 crop forecast, 8 weeks of data could have been
available for the October 1 forecast, and all ten weeks had been pro-
cessed by the November 1 estimate. Which of the three models does the
best job of predicting corn growth? What properties should a model demon-
strate to show that it can give a reliable grain forecast?

Two possible methods of evaluating these models were suggested in an
earlier research report on corn. (XII) These are:

(a) The magnitude and sign of the departure of the forecast
from the actual mean dry weight at maturity.

(b) The magnitude of the relative standard deviation of the
primary parameter, a.

Mean dry weight at maturity was estimated from the subsample of plants
that were sampled after reaching maturity. Maturity was defined to have
been reached 60 days after silking. The mean was weighted according to
silked plants per acre in the same manner as the nonlinear regression.

Small deviations of a from the mean dry weight at maturity at early cutoff
dates could indicate a reliable early forecast.

14



The relative standard deviation is the estimated standard deviation
divided by the estimate of the primary parameter:

Relative Standard Deviation =
cra

a

Other important considerations in comparing the three models include:

(c) The cutoff date on which the primary parameter a begins to
stabilize.

(d) The presence of heteroscedastic error.

Graphs in the appendix of this report show the following for each of the
three models in each state:

1. Absolute value of relative deviation of a from the mean dry
weight at maturity, over time (Figures A-19 through A-22).

2. The relative standard deviation of the primary parameter over
time (Figures A-4, A-7,A-6, A-9).

3. The estimated primary parameter over time (Figures A-4, A-7,
A-5, A-B).

In addition to these graphs, there are accompanying tables which give
exact values of the variables which appear in the graphs. Below are
some generalizations that can be made by reviewing the results presented
in the graphs and charts.

In going over the data, it was immediately clear that considerably more
variability exists in the results from the Texas data. This appears to
be the result of the sample size being about one-third of that in Iowa.
For either state, it is important to give special attention to what the
data are doing at the end of four weeks and then at the end of eight
weeks.

The relative error of the primary parameter is one of the more useful
measures of the reliability of the forecast estimate and should be help-
ful in contrasting the two adjusted models. In Iowa, the standard error
adjusted model has a relative error which drops below the 5 percent level
by the fourth week, which is in time for the September 1 forecast. By
the fifth week the logistically adjusted model's relative error is also
below 5 percent. In Texas, where the sample size was considerably small-
er, the relative error of the standard error adjusted model reached 5
percent on the fifth visit with both of the other models falling to about
5 percent level by the sixth week. The relative error of the standard
error adjusted model remained consistently below that of the other two
models, but deviation between the errors of any two of the models was
relatively small after four weeks of data was available.
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One important characteristic .of a forecasting technique is stability.
After a certain amount of data have been made available, inclusion of
additional data should not cause great shifts in forecast levels. (More
variability will of course occur in years when late season data repre-
sent growing conditions very different from that represented by earlier
data). The earlier in the growing season that a model's forecast level
begins to stabilize, the earlier such a forecast can be reliably used
in making official yield forecasts.

Due to the lack of data in early weeks of a within-year growth model,
one would expect considerable fluctuation from one cutoff date to
another during these early weeks. What happened after four weeks when
the September 1 forecast must be made? Texas with its small sample
size was still fluctuating considerably at this stage. The Iowa fore-
cast level at four weeks, using either of the two adjusted models, did

not vary much from the levels found after six weeks, but there was still
a jump in dry weight (a little under ten grams per plant) between the
4 week forecast and the 8 week forecast (October 1). It should be no-
ticed that in the relevant range of the growing season (four weeks and
after) the forecast levels obtained by using the standard error adjust-
ment model and the logistically adjusted model were consistent.

An upward trend of the a forecast levels over time in both states and
all three models was observed. This condition was more noticeable in
Iowa where each week the forecast level was several grams larger than
the level the week before. This could indicate a serious problem in
the forecasting technique. Could this condition be intrinsic to this
forecasting process or is it a phenomenon peculiar to the 1976 growth
data? This question will be addressed in more detail in the section
on the simulation model.

One final evaluation tool that was used to compctre the various models
involved looking at what could be called maturity deviation. The mean
dry weight at maturity was calculated and the percent relative deviation
from mean dry weight at maturity was determined for each cutoff date.

maturity deviation
a - am

am
x 100 (13)

~fuere a is the forecast estimate and a is the mean dry weight at maturity.m

In the Texas data there seemed to be a good bit of variability between
models and from week to week for the same model. No one model appeared
to perform appreciably better than any other when evaluated by this
criterion. Using the Iowa data, the unadjusted model had a maturity
deviation which fell under the 5 percent mark in four weeks (the Sept-
ember 1 forecast). The standard error adjusted model used with the
Iowa data did not reach the 5 percent level until nine weeks of data
were included while the logistically adjusted model never reached it.
This relatively poor showing by the two adjusted models resulted from
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the upward trend of the a levels already discussed. Again, it becomes
important to know if this trend is intrinsic to the procedures used.

When heteroscedasticity was discussed above, it was stated that the
violation of this model assumption results in inferior parameter estimates.
One should examine how well the adjusted models performed in removing
this violation. The figures labeled A-14 and A-16 in the appendix give
the sample correlation coefficients of the residuals with time. Under
the hypothesis that the correlation is zero, the charts also give the
probability that the random variable (the random sample correlation co-
efficient) will be greater than the computed value of R for this set of
data. This probability is computed under the null hypothesis. Thus low
values of this probability would correspond to rejection of the null
hypothesis while large values would lead to a failure to reject. Using
a test with a rejection level of .05, the unadjusted model in Iowa would
lead to rejection of the null hypothesis at each cutoff date. The logis-
tically adjusted model would lead to rejection only for the model fit
based on six weeks of data. The standard error adjusted model in Iowa
did not remove the heteroscedastic error as well as the logistic model.
The null hypothesis would be rejected using this model for all cutoff
dates greater than five weeks. This would even be the case if the re-
jection level was lowered to .01. In the Texas data, the two adjusted
models performed similarly, each failing to reject the null hypothesis
of zero correlation at every cutoff date, with the exception of the
fifth week using the logistic adjustment. Here there was a significant
negative correlation with time, indicating that the logistic adjustment
overcompensated for the changing variance.

ANALYSIS OF DATA SIMULATION

To answer a number of questions raised earlier in this report, it was
important to obtain data that was free from characteristics peculiar to
a single growing season. Since similar data from distinct growing sea-
sons were limited, the alternative ~as to construct a set of simulated
points from the mathematical model that had been hypothesized to express
the accumulation of dry kernel weight over time. This approach has the
added advantage of providing a check on the logistic functional form as
an appropriate model for dry matter accumulation.

Simulated data points showing dry kernel weight versus time were con-
structed from the basic logistic model to represent a typical growing
season for corn. The data from ten weeks of visits in Iowa were taken

as a base for the simulation. The estimated parameters a, S, p, from the
unadjusted non-linear regression on the growth data were chosen for the

A A A

simulation model. E,F,G, the estimated parameters from the non-linear
regression on the absolute value of the residuals were also used to ex-
press the dependence of the residuals on time. For each observation in
the Iowa data, the independent time variable was plugged in to produce
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where v.(t.) was a normal random variable generated by the SAS random
1. 1.

variable generating procedure. This random variable had mean zero and
standard deviation:

E 33.977

av. (t.)
1 1

F

G

44.777

.8904

(15)

Thus, these simulated data points were generated following the assumptions
that were made when applying the logistically adjusted model. A graph
of these simulated data points can be found in Figure A-3 in the appendix.
A comparison of this data with the 1976 Iowa growth data on Figure A-2
indicates that a "good copy" has been created. This in itself gives
additional credibility to the use of the logistically adjusted model to
eliminate heteroscedasticity.

The unadjusted logistic model and the two adjusted variations were fitted
to the simulated data in the same manner as they were fitted to the orig-
inal sets of data. The only difference was that the weighting factor
determined by silked plants per acre was eliminated because of the non-
existence of between-field differences in the simulated data. An exam-
ination of the parameter estimates and errors obtained from the regressions
was made.

An upward trend of the a forecasts levels over time was observed in 1976
growing season data from both states. Construction of simulated data
was first suggested to indicate whether this trend represented only 1976
growing conditions or whether it was a phenomenon likely to occur when-
ever the logistic model was fitted to growth data at various cutoff dates.
If this trend was observed when fitting simulated growth data, it could
easily be concluded that the upward trend was intrinsic to the forecast-
ing process. Figure A-II in the appendix is a graph showing the a values
for the ten cutoffs. An upward trend is not exhibited by these simulated
data points. In fact, the standard error adjusted model has a stable es-
timate by four weeks with the logistic model giving a very stable estimate
by five weeks of data.

When the three models were fitted to the simulated data, the standard re-
lative error of the primary parameter behaved in a similar manner to its
behavior when the models were fitted to the 1976 Iowa data. The relative
error of the standard error adjusted model remained below that of the
other models, but the differences were not great. The error terms came
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close to the 5 percent level at the fifth week~ and then steadily declined
(See Figures A-10 and A-12).

The "mature dry kernel weight" of data in the simulation was the (l :::;141.17
s

used in the construction of the data points. Maturity deviation for the
simulated points was defined to be:

Maturity Deviation =
(l - (ls

(ls

x 100% (16)

where (l is the forecasted "dry kernel weight at maturity" for the cutoff
date in question. A table and graph of such deviations appears in the
appendix on Figures A-23 and A-24.

These maturity deviations were then used as a method of evaluating the
three models when fitted to the simulated data. The results were en-
couraging. Both adjusted models reached a maturity deviation of about
5 percent or lower after only three weeks of data. The deviation of the
logistic model rose to over 10 percent at the four week cutoff~ but the
maturity deviations of both adjusted models remained below 4 percent for
the remaining cutoff dates.

Figure A-1S shows the effect that the two adjusted models h~d on removing
the heteroscedastic error built into the simulated data points. Since
the standard deviation of these points was constructed to be a logistic
function of time, it was expected that the logistically adjusted model
would do the better job of removing the dependence on time. This was
not the case. The logistically adjusted model produced residuals sig-
nificantly (at the 5 percent level) correlated with time at cutoff dates
of six weeks~ nine weeks and ten weeks. The residuals from the regression
involving the standard error model were never significantly different
from zero (at the 5 percent level).

LOGISTIC SURVIVAL MODEL

During the process of fitting data for the logistic growth model, the
data points with zero growth were deleted. Most of these were termed
"non-survivors" and were used to forecast a survival ratio to help in
the determination of surviving plants per acre.

If a plant was sampled more than six days after silking and no kernel
formation was discerned~ then the assumption was made that growth would
not occur--the plant had failed to survive. The survival variable for
such plants was set to zero, while plants with at least one ear showing
growth had the survival variable equal to one.
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If a plant was sampled within six days after its silking date and no
growth was then present, it was not possible to accurately determine
whether no growth would occur in the future or whether normal growth
had not yet commenced. For this reason, data from plants sampled
six or fewer days after silking were deleted from the survival analysis.

As in the logistic growth regression procedures, individual plant data
were replaced by means taken over plants in the same field that were
sampled on the same date.

The logistic survival model is of the form

S.
l.

+ ll.
l.

i = 1,2, ... , n (17)

where y, 0, Q are parameters

O<y,Q<l

0<0

11. disturbance term
1.

t. independent variable
1.

s. = dependent variable
1.

The independent time variable is still time since silking, but in the
survival model, t is referred to as "survival time". "Survival time"
was often not equal to "time since silking" in the growth model since
plants included in the each mean could change. The dependent variable,
s., is the survival ratio, a non-negative number less than one. The

l.

weighted Gradient nonlinear regression procedure in SAS was used with weights
as in (2). An examination of the residuals failed to discover a heter-
oscedastic error present so no adjustment was necessary.

The primary parameter, y, is
vival ratio at maturity that
acre at maturity" from early

the asymptotic value of s .. It is this sur-
l.

was used to forecast "surviving plants per
season estimates of "silked plants per acre".

The survival model parameters estimated for Iowa and Texas using all ten
weeks data are given below. The survival model was fitted to the data
at various cutoff dates with little change from cutoff to cutoff.
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y

a / yy

6

Q

rO\\TA

.980

.002

-.040

44.723

.700

4.604

TEXAs

.990

.003

-.040

35.125

.700

4.279

Plots of the survival data for each state after ten weeks are contained in
Figures A-25 and A-26.
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COMPLETING THE FORECAST

This section will discuss the way the information generated in the
istic growth and survival models was used to forecast corn yields.
copy of the worksheet used is found in the appendix in Table A-27.

log-
A

Plant population counts made early in the season were expanded to
estimate plants per acre. The phenological observation data were used
to determine what percentage of these plants had actually silked, so an
estimate of silked plants per acre could be made. The survival ratio
generated by the logistic survival model is multiplied by this estimate
to produce a forecast of plants per acre with grain at maturity. The
primary parameter estimate in the logistic growth model, which is the
forecast "dry kernel weight per plant at maturity" is adjusted to the
standard 15.5 percent moisture weight (The factor .982 was based on
a previous study involving paired sampled of mature kernels. One sam-
ple underwent the research drying method while the other was dried using
the warmer official ovendrying method for determining moisture content.)
(IX) The forecast 15.5 percent moisture grain weight per plant at
maturity was multiplied by the forecast number of plants per acre with
grain at maturity to produce the forecast biological yield. This bio-
logical yield was then adjusted by a historically based ratio to account
for harvesting loss in the field, producing a forecast of harvested yield.
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CONCLUSIONS AND RECOMMENDATIONS

The 1976 Corn Research Project has demonstrated that within-year re-
gression modeling can provide a good corn forecast by October 1 and a
reasonable forecast by September 1. A forecast by this method prior to
September 1 would not be feasible.

Further research efforts should be made to improve the stability of the
September 1 forecast. Results from the regression of the simulated data
for a forecast at this point in the growing season indicated that under
ideal conditions (no extremebetweeu field differences or major weather
deviations during the growing season) a very stable September 1 fore-
cast is possible. Recall that with four weeks of data, the forecast from
the simulated data had a deviation from mature dry weight under 5 percent.

Methods to deal with less than ideal situations should be studied. Possi-
bilities include the following:

1. Incorporate weather variables into the model. One way that this could
be done is to use "stress-free days since silking" as the indepen-
dent variable instead of simply "days since silking." This would
give a more accurate count of the number of days when actual growth
had taken place, but would not, of course, take into account future
weather conditions.

2. An attempt should be made to relate growing conditions in the field
to changes in dry kernel weight in the laboratory. If such re-
lationships and the associated lag times can be estimated, they could
be used to improve the earlier forecast indications.

3. The possibility of between field differences has not been addressed
by this research. Instead, data from all fields have been put to-
gether in a single model. The possibility of running more than
one model per state should be explored. Field data could be ag-
gregated based on criteria using weather conditions, agricultural
practices, or possible combinations of these.

A great deal of attention in this research report has been given to
developing and comparing variations of the logistic model that would
alleviate the heteroscedastic error. The standard error model performed
slightly better than the logistically adjusted model when evaluated by
several of the criteria. However, the difference between the perform-

anceswas not great enough to justify abandonment of the logistically ad-
justed model. It is recommended that both models be applied to data from
the coming season, reevaluated, and a weighted average between the two
be found based on their performances over the 1975, 1976 and 1977 growing
seasons. In developing forecast indications for the 1977 growing season
for use by the State Statistical Offices of involved corn states, a sin-
gle model should be used for every forecast during the season. In this
way, changes in forecast levels would indicate only changes occurring
in the fields and not differences between models. If a combination ~odel
has not been developed for use by September 1, it is recommended thal the

23



standard adjusted model be used.

Because of the labor intensive nature of the data collection procedures,
efforts should continue to look into modifications of these procedures
that could reduce data collection and processing manhours. Possibilities
include sampling fewer plants per visit or fewer kernel rows per ear.
An evaluation of double sampling techniques using in-field measurements
is already underway.
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FIGURE A-4

IOWA
PARAMETER ESTIMATES ANn RELATIVE ERRORS

WEEKS o~/(J. ClS/B 0"/0OF DATA MODEL a B p p

1 Week Unadjust 41.2 35.0 44.3 23.1 .808 4.2
Logistic 45.7 51.5 45.8 37.1 .813 3.1
St Error 41.5 40.8 38.4 25.7 .817 3.1

2 \~eeks Unadj ust 78.7 17.1 84.6 16.4 .826 1.9
Logistic 91.6 22.9 75.2 16.3 .840 1.2
St Error 100.2 24.1 77.7 16.4 .845 1.2

3 Weeks Unadj ust 117.8 12.2 73.2 13.6 .858 1.2
Logistic 106.3 11.2 77.3 8.8 .849 .8
St Error 104.0 10.0 73.1 7.6 .851 .7

4 Weeks Unadjust 146.7 9.2 67.7 14.4 .874 > .1
Logistic 122.9 7.4 81.0 7.2 .856 .6
St Error 128.6 4.8 79.1 6.0 .861 .5

5 Weeks Unadj ust 137.6 5.3 57.5 18.1 .877 .9
Logistic 122.1 4.5 78.3 7.2 .858 .5
St Error 126.0 4.3 76.3 6.5 .861 .5

6 Weeks Unadjust 145.0 4.5 46.8 18.5 .887 .8
Logistic 127.7 3.3 75.9 7.4 .862 .5
St Error 131.4 3.2 72.8 7.2 .866 .4

7 \~eeks Unadjust 141.0 3.0 43.8 19.5 .888 .8
Logistic 129.6 2.6 75.3 7.1 .863 .4
St Error 134.5 2.3 70.1 7.2 .869 .4

8 Weeks Unadj ust 142.4 2.5 39.7 20.2 .892 .8
Logistic 132.6 2.2 73.9 7.1 .866 .4
St Error 136.4 2.0 67.3 7.6 .872 .4

9 Weeks lJnadjust 140.3 2.0 40.2 21.7 .890 .8
Logistic 133.3 2.0 73.3 7.1 .86f .4
St Error 136.8 1.8 67.1 7.4 .872 .3

10 Weeks Unadj ust 141.2 1.8 38.4 21.5 .892 .7
Logistic 135.0 1.8 73.4 6.9 .867 .4
St Error 138.0 1.6 65.6 7.6 .873 .4
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IOWA

PRI MARY PARAMETER ESTIMATES FOR I.JEEKLY CUTOFFS
Unadjusted Model

- - Logi stic Adjustment
-----Standard Error Adjustment

ww

160

140

a

Asymptot ic dry
wt per plant
in grams 120

100

80

---._-4------.--- ..•.....__--- ....-_---4------ --.•...•...• ---.•. -,---- ....•-..•...•...•.••. ....-
/ ,1;-- - ....-

//
)'

~

"......G)
c:
:;c
/'Tl

:x:-
I

(.J'1

1 3 'I 5
(Sept 1

forecast)
Weeks of Collected Data

6 7 8 9
(Oct 1

forecas t)

10



1098

(Oct 1
forecast)

76

IOWA

RELATIVE ERROR OF THE PRIMARY PARAMETER
Unadjusted Model

----logistic Adjustment

54

(Sept 1
forecast)

2

5

45

35

w~
Relative 25

error

a •
a

4

a
15

Weeks of Collected Data



FI GURE A- 7

35



120

Asymptot1c
mean Dry wt
per plant in
grams

TEXAS

PRIMARY PARAMETER ESTIMATES FOR WEEKLY CUTOFFS

"'T1•....•
G')

c:
;0
f"Tl

»,
():)

180

140

160

Q

w

'"

--------- Unadjusted Model

100 - - Logistic Adjustment

----- Standard Error Adjustment

80 l ------- ---'---- ---'----'----'- __ -'-__ --1'--__ -'- __
52 3 4

(Sept 1
forecast)

Weeks of Collected Data

6 7 8

(Oct 1
forecast)

9 10



35

\
\I
I

\\
\1

~

\
TEXAS
RELATIVE ERROR OF THE PRIMARY PARAMETER

Unadjusted Model
Logistic Adjustment
Standard Error Adjustment

- •..._-- ...•

5

Relative 25w error......,

aa
a

15

1 2 3 4

(Sept 1
forecas t)

5 6 7 8

(Oct.l
forecas t)

9 10

Weeks of Collected Data



FIGURE A-1O

SIMULATED DATA--
PARAMETER ESTIMATES AND RELATIVE ERRORS

WEEKS
o~/o. o 'B/,J o~;POF DATA MODEL a B p

1 Week Unadjust (too little data for prooer convergence)Logistic
St Error

2 Weeks Unadj ust 103.0 34.3 34.5 20.1 .876 1.8
Logistic 186.6 85.1 53.4 77.5 .891 1.3
St Error 160.6 68.3 47.1 59.7 .888 1.4

3 Weeks Unadj ust 117.0 14.4 38.4 10.5 .879 1.1
Logistic 137.4 20.7 40.5 15.8 .867 .7
St Error 136.0 21.1 40.9 15.9 .886 .7

4 Weeks Unadjust 157.2 10.3 42.6 9.1 .893 .7
Logistic 152.7 10.2 43.4 7.6 .890 .4
St Error 148.0 9.2 42.5 6.8 .889 .4

5 Weeks Unadjust 144.5 5.5 37.6 11.7 .893 .7
Logistic 137.9 5.2 40.3 4.8 .888 .4
St Error 141.4 4.8 40.6 4.5 .889 .3

6 Weeks Unadjust 153.7 4.8 33.5 13.1 .901 .7
Logistic 139.1 3.9 40.1 5.3 .888 .4
St Error 141. 3 3.6 40.0 4.4 .889 .3

7 Weeks Unadjust 146.5 3.0 34.5 15.1 .897 .6
Logistic 140.2 2.8 40.2 4.7 .889 .3
St Error 142.1 2.7 39.9 4.2 .890 .2

8 Weeks Unadjust 147.8 2.1 33.5 14.5 .898 .6
Logistic 143.3 2.1 40.5 3.8 .890 .2
St Error 144.7 1.8 39.8 4.2 .981 .2

9 Weeks Unadj ust 142.8 1.6 36.9 16.0 .893 .6
Logistic 141. 3 1.7 40.4 3.7 .889 .2
St Error 141.5 1.6 40.2 4.1 .889 .2

10 Weeks Unadj ust 142.9 1.4 36.9 16.0 .893 .6
Logi stk 141.7 1.5 40.5 3.6 .889 .2
St Error 142.3 1.4 40.2 4.0 .890 .2
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FIGURE A-14
CORRELATION OF REGRESSION RESIDUALS WITH TIME

----
10\41\

Weeks Unadjusted Model Logistic Adjustment St Error AdjustmentOf Data R Prob> lB.J R Prob> lBJ R Prob>lB1-

1 .59 .0001 -.10 .3654 .08 .5095
2 .52 .0001 -.03 .7481 .10 .2371
3 .47 .0001 .03 .6639 .03 .6239
4 .48 .0001 .01 .8479 .07 .2140
5 .51 .0001 .05 .3200 .08 .0936
6 .52 .0001 .09 .0411 .13 .0034
7 .51 .0001 .08 .0737 .13 .0021
8 .50 .0001 .07 .0523 .13 .0007
9 .49 .0001 .07 .0724 .12 .0014

10 .46 .0001 .05 .1879 .11 .0023
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FI GURE .l\- 16

CORRELATION OF REGRESSION RESIDUALS WITH TIME---- ---- --- - -
TEXAS

Weeks Unadjusted Model Logistic Adjustment St Error Adjustment
Of Data R Prob> lBJ R Prob> lBJ R Prob> lBJ

.34 .1579 .41 .0767 -.13 .6036
2 .45 .0028 .03 .3703 -.05 .7443
3 .37 .0026 .17 .1749 -.06 .6269
4 .46 .0001 .09 .4146 .08 .4589
5 .44 .0001 -.22 .0190 .02 .8468
6 .50 .0001 .09 .3131 >.01 .9624
7 .50 .0001 .04 .6541 >.01 .9874
8 .50 .0001 .05 .5043 >.01 .9942
9 .53 .0001 .08 .2196 .05 .4885

10 .49 .0001 .12 .0665 .13 .0609
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FIGURE A-18
CORRELATION OF REGRESSION RESIDUALS WITH TIME----

SIMULATED DATA

Weeks Unadjusted Model Logistic Adjustment St Error Adjustment
.of Data R Prob> lBJ R Prob> lBJ R Prob> ~

1 .48 .0001 -.18 .1211 .09 .4400
2 .56 .0001 .02 .7683 .07 .3681
3 .54 .0001 .04 .5905 .03 .6156
4 .57 .0001 -.02 .6789 .03 .6475
5 .56 .0001 .05 .2745 .03 .6195
6 .57 .0001 .13 .0045 .06 .1649
7 .59 .0001 .06 .1576 .04 .3115
8 .52 .0001 -.07 .0816 .05 .2431
9 .50 .0001 .08 .0449 -.003 .9370

10 .48 .0001 -.09 .0096 -.002 .9612
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FIGURE A-19
DEVIATION FROt-1t1EAN DRY WEIGHT AT MATURITY----- IO!~A

A mature plant was defined as one where time since silking
was greater than sixty days.

Mean .Q!.t Wei ght g ~1aturity
144.15 grams per plant

Weeks % of Absolute
Of Data Model Deviation Deviation

Unadjust -102.95 71.42
Logistic - 98.45 68.30
St Error -102.65 71 .21

2 Unadjust - 65.45 45.40
Logistic - 52.55 36.46
St Error - 43.95 30.49

3 Unadjust - 26.35 18.28
Logistic - 37.85 26.26
St Error - 40.15 27.85

4 Unadjust 2.55 1.77
Logistic - 21.25 14.74
St Error - 15.55 • 10.79

5 Unadjust - 6.55 4.54
Logistic - 22.05 15.30
StError - 18.15 12.59

6 Unadjust .85 .59
Logistic - 16.45 11:41
St Error - 12.75 8.84

7 Unadj ust - 3.15 2.19
Logistic - 14.55 10.09
St Error - 9.65 6.69

8 Unadjust - 1.75 1.21
Logistic - 11.55 8.01
St Error - 7.75 5.38

9 Unadjust - 3.85 2.67
Logistic - 10 .85 7.53
St Error - 7.35 5.10

10 Unadjust - 2.95 2.05
Logistic - 9.15 6.35
St Error - 6.15 4.27
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FIGURE A-21
DEVIATION FROM MEAN DRY WEIGHT AT MATURITY-----

TEXAS
A mature plant was defined as one where time since silkingwas greater than sixty days.

Mean ~ Weight at Maturity
166.95 grams per plant

Weeks % of Absolute
Of Data Model Deviation Deviation

1 Unadjust
Logistic
St Error

2 Unadjust 23.65 14.17
Logistic 55.35 33.15
St Error 82.05 49.14

3 Unadjust -49.95 29.92
Logistic -52.15 31.24
St Error -50.85 30.46

4 Unadjust 9.95 5.96
Logistic -30.85 13.48
St Error -10.55 6.32

5 Unadjust -22.65 13.57
Logistic -27.85 16.68
St Error -15.45 9.25

6 Unadjust -20.65 12.37
Logistic -21.45 12.85
St Error -15.45 9.25

7 Unadjust -16.35 9.79
Logistic -19.05 11.41
St Error -13.75 8.24

8 Unadjust -13.95 8.36
Logistic -16.95 10.15
St Error -12.65 7.58

9 Unadjust -10.25 6.14
Logistic -14.65 8.78
St Error -16.65 9.97

10 Unadjust - .95 .57
Logistic - 9.25 5.54
St Error -12.15 7.28

49



----------- -- ..••....- - - - - •.•.. - - - - ~ c..:e::. ••
..,.. -.....----- - ~' ....

•...... .....•'-..

1098

(Oct 1
forecast)

76

TEXAS
% of Absolute Deviation from Mean Drywt at ~aturity

Unadjusted Model
Logistic Adjustment
Standard Error Adjustment

---

54

(Sept 1
forecast)

•
\

\ \
50 r \ \

45 \\
\r-

\ \I \

\ \oar \
\

\ \
\

\
\

15~
\
\

l_ \
10 -

/>laturi ty
Deviation

25 t(J'l
a

20
,
I
I

15 l-

ID

5

',leeksof Collected Data



FIGURE A-23
DEVIATION FROM MEAN DRY WEIGHT AT MATURITY-- -- - --- ----SIMULATED DATA

~
Asymptotic dry weight at maturity was defined to be a value

used in constructing the simulated data.
Asymptotic Q!l Weight at Maturity

141.17 grams per plant
~Jeeks '~of .l\bso 1ute

Of Data Model Deviation Deviation
1 Unadjust

Logistic
St Error

2 Unadj ust -38.17 27.04
Logistic 45.63 32.32
St Error 19.43 13.76

3 Unadj ust -24.17 17.12
Logistic - 3.77 2.67
St Error - 5.17 3.66

4 Unadjust 16.03 11.36
Logistic 11.53 8.17
St Error 6.83 4.84

5 Unadjust 3.33 2.36
Logistic - 3.27 2.32
St Error .23 .16

6 Unadjust 12.53 8.88
Logistic - 2.07 1.47
St Error .13 .09

7 Unadjust 5.33 3.78
Logistic - .97 .69
St Error .93 .66

8 Unadj ust 6.63 4.70
Logistic 2.13 1.51
St Error 3.53 2.50

9 Unadjust 1.63 1.15
Logistic .13 .09
St Error .33 .23

10 Unadjust 1.73 1.23
Logistic .53 .38
St Error 1.13 .80
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FIGURE A- 27
1976 CORN YIELD FORECASTING RESEARCH - WORKSHEET-- -- -- ----- ----

State or Area Corn for Grain
Number of Sample Fields (for Grain) Forecast Date _

Plants With Potential to Produce Grain
Item 1 - Total number of plants per acre .•...................... _
Item 2 - Relative standard error of plants per acre %_o

Item 3 - Total number of silked plants per acre _
Item 4 - Relative standard error of silked plants per acre %_0

Forecast Number of Plants Per Acre With Grain at Maturity
Item 5 - Forecast ratio of plants in Item 3 surviving with grain at

maturity .--------
Item 6 - Relative error of the primary survival parameter %
Item 7 - Forecast number of plants per acre with grain at maturity

(Itern3 x Itern 5) .------
Forecast Standard Moisture (15.5%) Grain Weight Per Plant At Maturity

Item 8 - Forecast "dry" grain weight per plant at maturity grams
Item 9 - Relative error of the primary growth parameter %-----------
item 10 - Adjusted 15.5% moisture grain weight per plant at maturity

(Item 8 x .982)/.845 g-r~ms
( 1bs • )11

Forecast Yield Per Acre
Item 11 - Biological Yield per acre (Item 7 x Item 10)/453.59 ...

Item 12 - Forecast harvested yield per acre (Item 11 x
(

) .....
(

1bs.

bu. )y

1bs.
bu. )Y

11 Pounds equivalent is based upon one pound being equal to 453.59 grams.
~ Pounds are converted to bushels based upon 56 lbs. of 15.5% moisture corn

grain equaling one bushel.
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